Thermal Conductivity Measurements and Molecular Association in a Series of Alcohol Vapors: Methanol, Ethanol, Isopropanol, and t-Butanol

D. J. Frurip,¹ L. A. Curtiss,¹ and M. Blander¹

Received January 8, 1981

Thermal conductivity measurements on the vapors of methanol, ethanol, isopropanol, and t-butanol are reported as a function of temperature (330-420 K) and pressure (11-240 kPa). The thermal conductivity versus pressure isotherms for all four alcohols exhibit upward curvatures at the lower temperatures and nearly linear increases at higher temperatures. This behavior is indicative of a dimeric species and one or more polymeric clusters in the vapor in addition to the monomer. Quantum mechanical calculations have indicated that tetramers are the most likely polymeric species. Detailed analyses of the data provide thermodynamic data $(\Delta H, \Delta S)$ for the dimerization and tetramerization reactions and show interesting correlations with the size of the monomer unit.

KEY WORDS: Alcohol; hydrogen bonding; thermal conductivity; thermodynamics.

1. INTRODUCTION

The importance of developing an understanding of hydrogen bonding between molecules has long been recognized as a prerequisite for attacking many fundamental questions on the structure of liquids (such as water) and on nucleation and condensation. Consequently there have been a large number of experimental studies of species which form hydrogen bonds in the vapor phase [1]. A great deal of this work has been directed toward the study of alcohol vapors; a review of such studies through 1973 is given in Ref. 2. In a study of methanol vapor from this laboratory [3], the thermal conductivity isotherms exhibited a strong upward curvature with pressure. Measurements

115

¹Chemical Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

of the thermal conductivities of molecules which tend to form hydrogen bonds can provide information on large associated species which cannot be readily obtained by other types of measurements. It was found that the methanol thermal conductivity data could be fit very well assuming the presence of a tetrameric associated species in addition to the monomer.

In this paper we report thermal conductivity measurements on the series of alcohol vapors: methanol, ethanol, isopropanol, and t-butanol. The data were taken in the temperature range 330–420 K and the pressure range 80–1800 Torr (11–240 kPa). Data on methanol and ethanol were acquired over a larger range of temperature and pressure than that reported previously [3, 5]. In each case the lower-temperature isotherms exhibit upward curvatures with increasing pressure, while at the higher temperature the isotherms show essentially linear increases with pressure. All of the alcohol thermal conductivity isotherms were fit quite well using the Butler–Brokaw theory [6–8] assuming the presence of a dimer and one higher associated species in addition to the monomer. In Section 2 details of the thermal conductivity measurements are given. In Section 3 the data are fit to the Butler–Brokaw theory assuming various possible associated species. Finally, in Section 4 the thermodynamic quantities for the associated species are discussed.

2. EXPERIMENTAL METHOD

The thermal conductivity, k, of each alcohol vapor was measured as a function of pressure at a minimum of six temperatures in the range 330–420 K. All measurements were made with a thick hot-wire cell using a relative technique in which the cell was calibrated with high-purity reference gases (e.g., N₂, Ar, Kr). Details of the apparatus, experimental procedure, and reference gas thermal conductivities have been given in other publications. [9, 10]. The reagent-grade alcohol samples were dried (Linde molecular seive, 15A) and degassed *in vacuo* prior to use. Due to the so-called "temperature-jump" effect [11], no data were recorded at pressures below 80 Torr (11 kPa).

For the cell used in this study [12], the measured cell voltages, V, at a constant input current, were empirically found to be related to the reference gas thermal conductivities by the relation

$$V = A + B/k,\tag{1}$$

where A and B are constants dependent only on the temperature. Because of this linear relationship, it was sufficient to calibrate the cell with only two

e
Z
ă,
a
~
0
u l
he
5
Ž.
£
0
1
\mathbf{X}
•
-
bo l
7
· ~
E
ğ
Ś
3
÷.
.2
÷.
ă
G
E
Ŭ.
_
13
E
ē
2
3
Ξ
ခု
<u> </u>
G
ē.
ŵ
 ;
é.
9
F.
-

T = 33	7.6 K	T = 35.	2.2 K	T = 36(6.6 K	<i>T</i> = 38	I.7 K	T = 40	0.3 K	T = 419	.9 K
p (Torr)	10 ⁵ k	p (Torr)	10 ⁵ k	p (Torr)	$10^{5}k$	p (Torr)	105k	p (Torr)	105k	p (Torr)	$10^{5}k$
105	4.505	66	4.799	109	5.107	112	5.415	115	5:875	105	6.384
127	4.525	109	4.808	145	5.126	123	5.430	139	5.880	137	6.390
171	4.569	176	4.838	184	5.150	200	5.456	187	5.905	182	6.403
219	4.627	190	4.855	241	5.178	231	5.477	273	5.939	259	6.430
264	4.690	263	4.899	273	5.192	299	5.498	328	5.959	331	6.457
302	4.768	264	4.909	318	5.217	326	5.514	391	5.969	391	6.484
345	4.858	347	4.981	382	5.251	375	5.525	441	5.989	479	6.497
374	4.937	375	4.999	456	5.295	457	5.573	518	6.011	587	6.545
429	5.098	433	5.065	493	5.310	497	5.584	619	6.054	645	6.538
460	5.238	433	5.056	551	5.356	541	5.606	621	6.044	<i>611</i>	6.580
493	5.403	509	5.153	594	5.387	588	5.623	701	6.085	788	6.573
533	5.627	561	5.227	680	5.449	640	5.651	755	6.088	944	6.629
543	5.690	599	5.285	714	5.476	696	5.679	819	6.117	1013	6.643
584	5.973	686	5.454	611	5.530	757	5.713	916	6.151	1102	6.665
593	6.050	702	5.490	796	5.546	LLL	5.719	932	6.155	1205	6.701
629	6.380	724	5.544	888	5.641	847	5.753	1044	6.187	1264	6.694
637	6.436	<i>611</i>	5.681	946	5.710	869	5.771	1097	6.203	1394	6.744
648	6.567	863	5.939	066	5.763	946	5.800	1181	6.239	1465	6.781
654	6.618	998	6.483	1046	5.834	971	5.818	1210	6.242	1535	6.789
		1088	6.970	1102	5.914	1057	5.878	1235	6.259	1616	6.804
				1159	600.9	1146	5.927	1333	6.295	1781	6.849
				1227	6.114	1180	5.945	1468	6.342	1812	6.864
				1287	6.229	1279	6.008	1616	6.411		
				1291	6.236	1317	6.033	1777	6.474		
				1361	6.385	1351	6:059				
				1356	6.363	1391	6.091				
				1431	6.729	1419	6.117				

^a | cal · cm⁻¹ · s⁻¹ · K⁻¹ = 4.184 × 10⁻² J · m⁻¹ · s⁻¹ · K⁻¹.

Thermal Conductivity of Alcohol Vapors

).5 K	$10^5 k$	6.420	6.460	6.480	6.521	6.542	6.590	6.590	6.640	6.654	6.683	6.697	6.726	6.755	6.755	6.792	6.827	6.830	6.860	6.883	6.893	6.914	6.929	6.960	6.984	7.007								
	T = 419	p (Torr)	115	149	227	296	378	440	536	600	069	771	826	915	989	1068	1179	1275	1292	1394	1416	1624	1558	1664	1720	1833	1900								
l Vapor ^a	.0 K	10 ⁵ k	5.902	5.920	5.926	5.950	5.985	6.023	6.047	6.065	6.109	6.122	6.141	6.160	6.166	6.193	6.195	6.224	6.237	6.264	6.270	6.297	6.317	6.344	6.344	6.399	6.441	6.511	6.575						
of Isopropano	T = 400	p (Torr)	109	130	182	215	301	411	413	505	562	610	682	725	753	801	832	884	918	975	1012	1080	1115	1192	1229	1352	1488	1637	1798						
s ⁻¹ • K ⁻¹) c	1 K	10 ⁵ k	5.557	5.595	5.617	5.639	5.634	5.655	5.683	5.700	5.706	5.717	5.740	5.757	5.757	5.779	5.814	5.808	5.848	5.842	5.877	5.877	5.866	5.924	5.942	5.930	5.988	5.982	5.995	6.037	6.082	6.062	6.117	6.117	0.107
(cal \cdot cm ⁻¹ \cdot	T = 385	p (Torr)	137	168	244	281	285	328	357	401	411	446	487	529	552	576	625	657	669	737	775	782	823	876	914	919	979	1022	1027	1097	1144	1145	1208	1210	7171
nductivities	.8 K	$10^5 k$	5.125	5.149	5.163	5.187	5.201	5.225	5.230	5.283	5.283	5.317	5.352	5.387	5.407	5.457	5.482	5.518	5.554	5.591	5.681	5.675	5.822	5.827											
Thermal Con	T = 367	p (Torr)	117	139	195	217	274	302	340	399	424	470	501	553	592	650	694	724	786	808	899	901	995	1002											
xperimental	8.4 K	10 ⁵ k	4.699	4.725	4.747	4.777	4.826	4.858	4.917	4.981	5.061																								
Table II. E	<i>T</i> = 348	p (Torr)	129	163	192	228	272	305	356	400	448																								
	0.3 K	10 ⁵ k	4.516	4.520	4.549	4.562	4.588	4.609	4.635	4.643	4.683	4.691	4.740	4.754	4.794	4.803																			
	T = 34	p (Torr)	124	136	156	171	186	204	219	229	246	256	275	288	306	308																			

118

" | cal \cdot cm⁻¹ \cdot s⁻¹ \cdot K⁻¹ = 4.184 × 10⁻² J \cdot m⁻¹ \cdot s⁻¹ \cdot K⁻¹.

Fig. 1. Methanol vapor thermal conductivity versus the total pressure at the three lowest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

gases (N₂ and Ar) in order to determine A and B. We estimate that the absolute error in the calculated thermal conductivities is less than 1% and the relative error less than 0.5%. The uncertainty in the measured pressure is estimated to be ± 4 Torr (0.5 kPa) over the entire range. The experimental thermal conductivity data for ethanol has been tabulated in a previous publication [4]. The experimental data for methanol, isopropanol, and t-butanol are given in Tables I–III, respectively. The thermal conductivity

Fig. 2. Methanol vapor thermal conductivity versus the total pressure at the three highest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

).6 K	$10^{5} k$	6.319	6.305	6.339	6.385	6.398	6.425	6.465	6.466	6.520	6.551	6.564	6.590	6.601	6.614	6.641	6.652	6.677	6.678	6.710	6.720	6.743	6.756	6.777	6.801	6.819				
	T = 419	p (Torr)	93	128	152	261	313	411	458	569	609	711	757	849	889	939	1043	1087	1194	1196	1340	1386	1496	1554	1661	1790	1891				
Vapor ^a	.2 K	$10^{5} k$	5.844	5.873	5.896	5.926	5.950	5.986	6.009	6.041	6.047	6.090	6.071	6.128	6.134	6.179	6.179	6.290	6.205	6.218	6.231	6.257	6.297	6.304	6.378	6.469					
) of t-Butanol	T = 400	p (Torr)	106	188	275	319	415	473	556	628	675	762	803	917	964	1052	1108	1142	1159	1212	1278	1334	1463	1497	1662	1860					
$\cdot s^{-1} \cdot K^{-1}$.0 K	$10^{5} k$	5.435	5.446	5.482	5.472	5.477	5.514	5.520	5.547	5.552	5.584	5.584	5.628	5.623	5.655	5.655	5.688	5.689	5.711	5.728	5.745	5.762	5.785	5.814	5.837	5.877	5.889	5.912	5.942	5.954
ss (cal · cm ⁻¹	T = 384	p (Torr)	66	104	155	174	180	231	270	307	344	385	434	488	517	548	579	613	673	685	758	766	850	856	954	959	1071	1072	1133	1202	1203
onductivitie	.7 K	$10^{5} k$	5.136	5.136	5.175	5.180	5.200	5.220	5.241	5.256	5.281	5.302	5.338	5.333	5.390	5.405	5.438	5.470	5.491	5.524	5.540	5.617	5.628	5.662	5.690	5.741	5.781				
al Thermal C	T = 370	p (Torr)	89	102	154	180	223	234	308	315	385	394	462	480	545	595	644	704	715	785	800	892	925	978	995	1051	1108				
Experiment	3.0 K	$10^{5} k$	4.863	4.863	4.891	4.905	4.938	4.957	4.986	5.005	5.044	5.054	5.088	5.113	5.169	5.194	5.266	5.302	5.339	5.339											
Table III.	T = 358	p (Torr)	105	123	157	194	231	271	301	339	378	401	443	472	524	555	612	647	675	680											
	7.7 K	$10^5 k$	4.608	4.634	4.638	4.656	4.687	4.669	4.705	4.701	4.732	4.741	4.778	4.778	4.801	4.815	4.838	4.866	4.890	4.909	4.923	4.942	4.981	4.981	5.035						
	T = 34	p (Torr)	81	85	120	124	155	159	184	198	217	234	252	276	282	309	316	347	353	374	389	395	418	432	456						

120

^a 1 cal \cdot cm⁻¹ \cdot s⁻¹ \cdot K⁻¹ = 4.184 \times 10⁻² J \cdot m⁻¹ \cdot s⁻¹ \cdot K⁻¹.

Fig. 3. Ethanol vapor thermal conductivity versus the total pressure at the four lowest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

data of methanol reported in Table I were remeasured over the entire temperature range 338–420 K using the present apparatus. This is due to a slight inconsistency in the data in the present work as compared to the previously reported methanol results [3]. It was found that the present data fall below the previous results by a maximum of 10% at the lower pressures (<500 Torr). The final thermodynamic results for the methanol tetramerization reaction in Ref. 3 are not significantly affected by this discrepancy. Values of the presently measured thermal conductivity extrapolated to zero

Fig. 4. Ethanol vapor thermal conductivity versus the total pressure at the four highest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

Fig. 5. Isopropanol vapor thermal conductivity versus the total pressure at the three lowest temperatures. The solid lines are the best fits to the experimental data using the Butler–Brokaw theory assuming a monomer–dimer–tetramer model.

pressure are in close agreement with those of other experimental studies [13-15].

Plots of the experimental k data for the four alcohols versus the total pressure are given in Figs. 1–8. It is apparent that at the lowest temperatures the k-p isotherms for each alcohol exhibit strong upward curvature, whereas at the highest temperatures the thermal conductivity increases nearly linearly with the pressure.

Fig. 6. Isopropanol vapor thermal conductivity versus the total pressure at the three highest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

Fig. 7. t-Butanol vapor thermal conductivity versus the total pressure at the three lowest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

3. DATA ANALYSIS

The thermal conductivity of an associating gas can be expressed as

$$k = k_{\rm f} + k_{\rm c} + k_{\rm R},\tag{2}$$

where k_f is the thermal conductivity of a frozen (nonreacting) composition of all the vapor species, k_c is the enhancement of the thermal conductivity due to

Fig. 8. t-Butanol vapor thermal conductivity versus the total pressure at the three highest temperatures. The solid lines are the best fits to the experimental data using the Butler-Brokaw theory assuming a monomer-dimer-tetramer model.

"collisional transfer," and $k_{\rm R}$ is the contribution to the thermal conductivity from the transport of association enthalpy in a thermal gradient. Generally, $k_{\rm f}$ and $k_{\rm c}$ are very weakly dependent on pressure, whereas $k_{\rm R}$ is strongly dependent on pressure if there are associated species in the vapor.

A general expression for $k_{\rm R}$ when there are associated species present in the vapor has been given by Butler and Brokaw [6, 7] and is discussed in detail elsewhere [8]. An approximate equation for $k_{\rm R}$ when there are only small amounts of associated species present is given by

$$k_{\rm R} = \sum_{n} \left(p D_{1n} / RT \right) \left(\Delta H_n^2 / RT^2 \right) K_n p_1^{n-1}, \tag{3}$$

where *n* is the cluster size, *T* is the temperature in degrees kelvin, pD_{1n} is the pressure-binary diffusion coefficient, *R* is the gas constant, K_n is the equilibrium constant for $nA = A_n$, ΔH_n is the association reaction enthalpy change, and p_1 is the partial pressure of the monomer. Equation (3) indicates that the effect on the thermal conductivity of the presence of a small amount of dimer (n = 2) in the vapor is a nearly linear increase in the thermal conductivity with pressure at constant temperature $(pD_{1n}$ is pressure independent). Equation (3) also illustrates the p^{n-1} dependence of k_R which leads to the upward curvature of thermal conductivity versus pressure plots when there is a sufficient concentration of higher polymers (n > 2) present.

The experimental isotherms for the alcohols shown in Figs. 1–8 change in overall shape with temperature in a very interesting manner. The lowertemperature isotherms show strong upward curvatures indicative of one or more polymeric species larger than the dimer. At the higher temperatures, however, the isotherms increase linearly with pressure, indicative of a dimeric contribution to $k_{\rm R}$. Thus, in light of the above discussion, it qualitatively appears that there are indeed at least two association reactions occurring simultaneously in this series of alcohols vapors. The temperature dependence of the terms in Eq. (3) apparently cause the dimeric reaction to dominate the thermal conductivity enhancement at high temperatures and the higher polymers to dominate at low temperatures.

In order to fit the alcohol vapor thermal conductivity data to Eq. (2), values for pD_{ij} , k_c , and k_f are necessary. We now proceed to explain how equations for these quantities were obtained. The pressure binary diffusion coefficient product, pD_{ij} , can be expressed [9] in terms of the monomer self-diffusion coefficient by the semiempirical relation

$$pD_{ij} = pD_{11}[(i+j)/2ij]^{1/2}[2/(i^{1/3}+j^{1/3})]^2.$$
(4)

The term pD_{11} is evaluated from gaseous viscosity data and the Lennard-Jones potential parameters, $\epsilon/k_{\rm B}$ and σ , using a procedure described in Ref. 9. The form of pD_{11} is

$$10^{5} pD_{11} = aT^{2} + bT(\text{cal} \cdot \text{cm}^{-1} \cdot \text{s}^{-1}), \qquad (5)$$

where *a* and *b* are constants $(1 \text{ cal} \cdot \text{cm}^{-1} \cdot \text{s}^{-1} = 4.184 \times 10^{-2} \text{ J} \cdot \text{m}^{-1} \cdot \text{s}^{-1})$. For methanol [16] and ethanol [17], experimental gaseous viscosities were used. For isopropanol and t-butanol the estimated viscosities of Gallant [18] were used. Lennard-Jones potential parameters for methanol were taken from Monchick and Mason [19]; those for ethanol, from Ref. 20; and those for isopropanol and t-butanol were estimated using the method of Ref. 21. Table IV lists these potential parameters and the resulting constants, *a* and *b*, in Eq. (5) for each alcohol.

The k_f and k_c terms are also somewhat pressure dependent (although to a much smaller extent than the k_R term) and must be included in the complete data analysis. In calculating these terms for the alcohol vapors the assumption is made that the equilibrium composition can be represented in terms of a monomer-dimer mixture only, i.e., the partial pressures of the higher polymers are negligible compared to those of the monomer or dimer. This assumption will be seen to be justified by the final results.

Using the scheme outlined in Ref. 9, the $k_{\rm f}$ term can be represented by the expression

$$k_{\rm f} = k_1 \left[\frac{1}{1 + 1.57 \, K_2 p_1} + \frac{k_2 / k_1}{1 + 0.699 / K_2 p_1} \right],\tag{6}$$

where k_1 is the value of the thermal conductivity at zero pressure and is taken to be a fitting parameter for each isotherm. The k_2 term is the hypothetical dimer thermal conductivity at zero pressure. The k_2/k_1 ratio was determined in a similar manner as in Ref. 9 except that Hirschfelder's formulation of the Eucken factor, *E*, was used [22]. This can be written as

Table IV. Values of the Lennard-Jones Potential Parameters, ϵ/k_B , and σ ; Constants *a* and *b* from Eq. (5); the Dimer to Monomer Thermal Conductivity Ratio, k_2/k_1 ; and the Collision Parameter, B_c

				, t		
	$\epsilon/k_{B}(\mathbf{K})$	σ (Å)	$10^{3} a$	$10^3 b$	k_{2}/k_{1}	B _c
Methanol	452	3.67	2.66	12.48	0.936	2.31
Ethanol	391	4.46	1.58	39.43	0.920	3.25
Isopropanol	391	4.93	1.17	-7.08	0.915	3.60
t-Butanol	350	5.48	0.94	-9.61	0.910	4.47

$$E = (1 - \delta_{\rm f}) + 2\delta_{\rm f}C_p/5R,\tag{7}$$

where δ_f was assumed to be 0.667 for both the monomer and the dimer of each alcohol. Using the heat capacities reported by Gallant [18] for methanol, isopropanol, and t-butanol and by Touloukian and Makita [23] for ethanol, we obtained the values of k_2/k_1 listed in Table IV. At 373 K, and at 1-atm pressure (101 kPa), the k_f contribution results in decreases in the total thermal conductivity of 0.4, 0.9, 1.6, and 1.6% for methanol, ethanol, isopropanol, and t-butanol, respectively.

The k_c term was obtained using the scheme outline in Ref. 24 (using the Lennard-Jones parameters in Table IV) and can be written as

$$k_{\rm c} = B_{\rm c} k_{\rm l} p / T, \tag{8}$$

with p in atmospheres and T in degrees kelvin. The constant B_c is given for each alcohol in Table IV. At 373 K and at 1-atm pressure, the k_c contribution results in increases in the total thermal conductivity of 0.6, 0.9, 1.0, and 1.2% for methanol, ethanol, isopropanol, and t-butanol, respectively. Note the near-cancellation of the k_f and k_c terms.

Using a least-squares fitting procedure described in detail in Ref. 9, the measured thermal conductivities for each alcohol were fit to Eq. (2) with $k_{\rm f}$ defined by Eq. (6), $k_{\rm c}$ defined by Eq. (8), and $k_{\rm R}$ given by the complete Butler-Brokaw expression. The complete form of the Butler-Brokaw equations is given in Refs. 6-8. In these fits, various models for the form of $k_{\rm R}$ were chosen. Consistent with the qualitative analysis of the k-p isotherms presented earlier, it was assumed that the alcohol dimer and one higher polymer were present in the vapor. The higher *n*-mers tested were the trimer (n = 3) through the octamer (n = 8). The variables in the fitting procedure were ΔH_2 , K_2 , ΔH_n , K_n , and one k_1 value for each isotherm.

For every alcohol except ethanol, the best fits were obtained assuming a monomer-dimer-tetramer model. In the ethanol case a 1-2-6 model gave an equivalent fit to the 1-2-4 case. These best fits are shown as the solid lines in Figs. 1-8 and are seen to do a good job in reproducing the data at both high and low temperatures. Only in the two highest-temperature isotherms of methanol are there significant deviations from the experimental data points. It should be pointed out that for every alcohol, the 1-2-n fits for $4 \le n \le 8$ were essentially indistinguishable by visual inspection. That is to say although the standard deviations of the fits for n > 4 were larger than the n = 4 fit, the increase was in many cases too small to be detectable by eye in the actual plots. On the other hand, the 1-2-3 fits in each alcohol had significantly larger standard deviations and the quality of the fits was obviously inade-

quate. In every case, the addition of a second higher polymer to the 1-2-4 fits did not produce a significantly better fit.

The zero-pressure thermal conductivities, $k_1(T)$, taken from the 1-2-4 fits, are given in Table V. Over the temperature range of these experiments, the k_1 values were essentially linear with temperature. Parameters from least-squares linear fits to the $k_1(T)$ data are also given in Table V.

4. RESULTS AND DISCUSSION

The best-fit thermodynamic quantities obtained for the various assumed polymerization reactions are given in Table VI. For each alcohol, note the relative constancy of the dimerization thermodynamic parameters, ΔH_2 and ΔS_2 , from the 1-2-*n* fits as *n* increases from 4 to 8. The reason for this is that the fitting procedure extracts the dimerization thermodynamic data mainly from the higher-temperature isotherms where there is little contribution from the higher-polymer association reaction. This also indicates that the dimerization thermodynamic parameters are relatively insensitive to the choice of higher polymer, which gives us confidence in the dimer values. The dimerization data obtained from the 1-2-3 fit deviate significantly from the other values because of the poorer quality of the fits.

Due to the essential equivalence in quality of the various 1-2-n fits for n > 3, we cannot unambiguously conclude that only one particular *n*-mer is responsible for the thermal conductivity enhancement. Certainly the actual

Meth	nanol	Eth	anol	Isopro	opanol	t-Bu	tanol
<i>T</i> (K)	$10^{5} k_{1}$	T (K)	$10^{5} k_{1}$	T (K)	$10^{5} k_{1}$	T (K)	$10^{5} k_{1}$
337.6	4.41	328.7	4.11	340.3	4.33	347.7	4.52
352.2	4.71	337.4	4.31	348.4	4.52	358.0	4.75
366.6	5.06	347.2	4.53	367.8	4.98	370.7	5.05
381.7	5.41	357.1	4.73	385.1	5.46	384.0	5.39
400.3	5.90	366.7	5.00	400.0	5.85	400.2	5.80
419.9	6.42	377.4	5.29	419.5	6.42	419.6	6.31
		405.3	5.91				
		418.7	6.39				
a' = -3.5	92	a' = -4.	10	a' = -4	.66	a' = -4	.19
b' = 0.02	45	b' = 0.02	.49	b' = 0.02	263	b' = 0.02	250

Table V. Zero-Pressure Thermal Conductivities,^{*a*} $k_1(T)$, and Linear Least-Squares Fitting Coefficients,^{*b*} a' and b', from the 1–2–4 Fits

^acal · cm⁻¹ · s⁻¹ · K⁻¹ (1 cal · cm⁻¹ · s⁻¹ · K⁻¹ = 4.184 × 10⁻² J · m⁻¹ · s⁻¹ · K⁻¹). ^b10⁵ k₁ = a' + b'T.

Fit	Methanol	Ethanol	Isopropanol	t-Butanol
	$\Delta H_2, \Delta H_n$			
n = 3	-3.46, -12.94	-3.20, -12.99	-4.04, -12.91	-4.07, -13.03
4	-3.51, -23.01	-3.70, -22.15	-4.09, -21.65	-4.26, -21.27
5	-3.50, -26.85	-3.92, -27.14	-4.17, -27.76	-4.38, -27.11
6	-3.89, -35.10	-3.86, -35.87	-4.13, -37.24	-4.37, -34.50
7	-3.99, -49.86	-3.88, -48.11	-4.29, -49.46	-4.30, -48.17
8	-4.07, -56.04	-3.90, -55.09	-4.28, -58.16	-4.31, -55.55
	$\Delta S_2, \Delta S_n$			
n = 3	-18.88, -46.99	-16.09, -46.62	-16.99, -46.24	-16.38, -46.31
4	-17.42, -78.22	-16.36, -74.65	-16.15, -72.37	-16.67, -71.23
5	-17.13, -89.92	-16.88, -89.43	-16.48, -90.17	-16.48, -88.46
6	-17.70, -114.9	-16.43, -114.7	-16.27, -117.2	-16.29, -120.7
7	-17.82, -159.1	-16.31, -149.9	-16.59, -152.1	-16.18, -147.9
8	-17.31, -177.2	-16.33, -169.8	-16.46, -176.5	-16.23, -168.5

Table VI. Thermodynamic Parameters $(\Delta H_2, \Delta S_2, \Delta H_n, \Delta S_n)^a$ Obtained for Alcohol Association Reactions from the 1–2–*n*-mer Fits to the Thermal Conductivity Data

^{*a*}Units of ΔH_n are kcal \cdot mol⁻¹; units of ΔS_n are cal \cdot mol⁻¹ \cdot K⁻¹ (1 cal = 4.184 J).

physical picture is one in which many different polymers exist in the vapor and one cannot separate their individual contributions to the thermal conductivity in the data analysis. However, we believe that the results of the 1-2-4 model giving the best fit for every alcohol is certainly strong evidence for the presence of a tetrameric species in the alcohol vapors. Theoretical *ab initio* molecular orbital calculations by Curtiss [25] indicate that for a series of methanol polymers $2 \le n \le 6$, the largest increase in binding energy occurred in the tetrameric species, leading us to believe that the tetramers are the most likely species larger than dimer in the vapor. This apparently occurs due to a favorable hydrogen bonding arrangement in the cyclic tetrameric structure. In a PVT study by Kretschmer and Wiebe [26], it was found that a monomer-dimer-tetramer model fit the data best for methanol, ethanol, and isopropanol. This is also consistent with heat capacity studies of Barrow [27] and Weltner and Pitzer [28]. Note, however, that in none of these studies were any higher polymer models (n > 4) tested.

The results of the various 1-2-n fits allow us to set definitive upper limits to the concentration of the associated species for n = 3, 4, 5, 6, 7, 8. In other words, the best-fit values of K_n at any temperature in the experimental range represent the largest possible values consistent with the thermal conductivity data. From the thermodynamic results in Table VI, we calculated the *n*-mer partial pressures at 373 K and 1-atm pressure. Generally, the polymer pressures are of the order of 10^{-3} atm (10^{-1} kPa) for the trimer; 10^{-4} atm

 (10^{-2} kPa) for the tetramer, pentamer, and hexamer; and 10^{-5} atm (10^{-3} kPa) for the heptamer and octamer.

Keeping in mind the uncertainties in the thermodynamic data obtained from the 1-2-4 fit, we can explore various trends that appear in the data on the dimer and tetramer as the alcohol size is increased (see Table VI). For example, as one proceeds from methanol through t-butanol, the quantities ΔS_2 , ΔH_4 , and ΔS_4 all become less negative, whereas, ΔH_2 becomes more negative. (The only exception to these trends is the decrease in ΔS_2 in going from isopropanol to t-butanol.) The dimerization and tetramerization constants mostly increase in going from methanol to t-butanol. Because of the large decrease in pD_{1n} , the net effect of these patterns in the individual parameters is to cause the numerical value of the quantity $(pD_{12}K_2\Delta H_2^2)$ at 373 K to increase by a factor of 2, while the quantity $(pD_{14}K_4\Delta H_4^2)$ decreases slightly (~7%) when one proceeds through the series methanol-t-butanol. Thus from Eq. (3) we see that the contribution to λ_R from the tetramer relative to the dimer decreases as one increases in the alcohols complexity.

There have been numerous successful attempts to correlate the hydrogen bond strength of heteroassociated species (i.e., AOH \cdots \overrightarrow{OB}) in solution to the relative acidities of the proton donor and acceptor. It is found that the hydrogen bond strength is enhanced as the relative acidities of the two species become increasingly disparate. However, these same correlations for selfassociation (i.e., one component) are not as successful. Since the same molecule acts as both proton donor and proton acceptor, this tends to cancel any effects due to acidities. Davis et al. [29] found that dimerization enthalpies became less negative in the series methanol, ethanol, isopropanol, and t-butanol in CCl₄ solution. One might predict on the basis of these results that decreasing the acidity of the monomer (i.e., by the addition of methyl groups to the alcohol) causes the dimerization enthalpy to become less negative. Singh and Rao [30] found that, in solution, fluorinated alcohols have less negative values of ΔH_2 than the corresponding unfluorinated alcohols, which in terms of relative acidities, implies the opposite. If we assume that trends in gas phase acidities parallel the condensed phase acidities, then our dimerization enthalpies go in the opposite direction from that found in CCl₄ solution, but in the same direction as the fluorinated species.

If the observed trend in dimerization enthalpies is indeed real, then one might expect a similar trend in the tetramer enthalpies. In fact the opposite trend is observed (Table VI). Hence, it appears that no simple explanation in terms of acidities can be given.

Quantum mechanical results by Curtiss [25] for methanol polymers indicate that cooperative effects in the bonding cause the binding energy in

the *n*-mers to be significantly larger than n-1 times the dimerization energy. The results in Table VI indicate that the experimental tetramer enthalpies are 8.5 kcal \cdot mol⁻¹ (35.6 kJ \cdot mol⁻¹) to 12.5 kcal \cdot mol⁻¹ (52.3 $kJ \cdot mol^{-1}$) more negative than the simple addition of dimer enthalpies would indicate.

The trend in polymerization entropies is also interesting. For both dimer and tetramer, the value of ΔS_n° tends to become less negative as the alcohol complexity increases. In order to investigate this effect in more detail, we calculated the translational and rotational entropies for the monomers and tetramers of each alcohol using standard statistical mechanical relations [31]. The rotational calculation was simplified by assuming that the CH_n groups were point masses. The hydrogen bonds were arranged in a square planar, cyclic array [25] with linear O-H $\cdot \cdot \cdot$ O bonds set at 2.50 Å (1 Å = 10^{-10} m), $r(CC) = 1.43 \text{ Å}, < (HOC) = 104^{\circ}, < (OCC) = 107.7^{\circ}, \text{ and } < (CCC) = 107.7^{\circ},$ 109.5°. In the methanol tetramer each methyl group was situated such that the H–O–C(H₃) bond angle was 104° and the H $\cdot \cdot \cdot$ O–C(H₃) bond angle was 166°. In the ethanol tetramer, the methyl groups were added to the methanol tetramer in the hydrogen bond plane such that the $C(H_3)$ - $C(H_2)$ -O-H dihedral angle was 180°. The next sets of methyl groups were added out of the plane (forming the isopropanol and the t-butanol tetramers). The results of this calculation are given in Table VII. Both the translational and the rotational contributions to ΔS_4 go in a direction opposite to that observed experimentally, i.e., they become more negative from methanol through t-butanol. Therefore, it must be the vibrational contribution of ΔS_4 which causes the observed trend. Estimates of this contribution were made by subtracting the calculated $\Delta S_{4,trans}$ and $\Delta S_{4,rot}$ from the total experimental enthalpy, $\Delta S_{4,\text{total}}$, and the results are given in Table VII. Assuming that only the 18 new intermolecular vibrations contribute significantly to $\Delta S_{4,vib}$ we

Alcohol	$\Delta S_{4, ext{trans}}$	$\Delta S_{4,\mathrm{rot}}$	$\Delta S_{4,\text{total}}$	$\Delta S_{4,\mathrm{vib}}^{b}$	Average ν in cm ⁻¹ at 373 K ^c
Methanol	-108.2	-43.0	-78.2	73.0	92
Ethanol	-111.4	-57.8	-74.7	94.6	50
Isopropanol	-113.8	-66.7	-72.4	108.4	34
t-Butanol	-115.7	-70.8	-71.2	115.3	28

Table VII. Analysis of the Alcohol Tetramerization Entropy^a

^{*a*}Units of cal \cdot mol⁻¹ \cdot K⁻¹ (1 cal = 4.184 J).

 ${}^{b}\Delta S_{4,\text{vib}} = \Delta S_{4,\text{total}}^{\text{expt.}} - \Delta S_{4,\text{rot}}^{\text{theory}} - \Delta S_{4,\text{rot}}^{\text{theory}}$. ^cCalculated from $S_{4,\text{vib}} = 18R [(\overline{u}/e^{u} - 1) - \ln(1 - e^{-u})]$, where $\overline{u} = (h\overline{\nu}/k_BT)$ and $\overline{\nu}$ is the average intermolecular frequency.

calculated "average" values of the intermolecular frequencies for each alcohol, and these are also given in Table VII. Note that although this analysis must lead to substantial uncertainties, the magnitudes of the frequencies are reasonable and also there is a steady decrease in the average frequency as one proceeds from methanol tetramer to t-butanol tetramer. This is what one might predict a priori, due to the increased mass of the alcohols as one proceeds down the group. Curtiss and Pople found decreased intermolecular frequencies in the D₂O dimer as compared to the H₂O dimer [32]. It is worthy of note that this trend of less negative entropies with increasing size is found for the association of ionic halides both experimentally and theoretically [33].

An estimate of the uncertainties in the dimer and tetramer thermodynamic parameters was made using a procedure similar to that in Ref. 24. The resulting uncertainties for each alcohol are given by: ΔH_2 , ± 0.9 kcal \cdot mol⁻¹ (± 3.4 kJ \cdot mol⁻¹); ΔS_2 , ± 0.7 cal \cdot mol⁻¹ \cdot K⁻¹ (± 2.9 J \cdot mol⁻¹ \cdot K⁻¹); ΔH_4 , ± 3 kcal \cdot mol⁻¹ (± 12.6 kJ \cdot mol⁻¹); ΔS_4 , ± 5 cal \cdot mol⁻¹ \cdot K⁻¹ (± 21 J \cdot mol⁻¹ \cdot K⁻¹).

5. CONCLUSIONS

The following conclusions can be drawn from this study of association in the alcohol vapors:

(1) Vapor phase polymerization leads to large enhancements in the thermal conductivity. The effect is most pronounced in the lighter alcohols at the lower temperatures.

(2) A monomer-dimer-tetramer model appears to fit the experimental data best for the four alcohols. The thermodynamic quantities are the following (1 cal = 4.184 J): $\Delta H_2 = -3.51$ kcal \cdot mol⁻¹, $\Delta S_2 = -17.42$ cal \cdot mol⁻¹ \cdot K⁻¹, $\Delta H_4 = -23.01$ kcal \cdot mol⁻¹, and $\Delta S_4 = -78.22$ cal \cdot mol⁻¹ \cdot K⁻¹ for methanol; $\Delta H_2 = -3.70$ kcal \cdot mol⁻¹, $\Delta S_2 = -16.36$ cal \cdot mol⁻¹ \cdot K⁻¹, $\Delta H_4 = -22.15$ kcal \cdot mol⁻¹, and $\Delta S_4 = -74.65$ cal \cdot mol⁻¹ \cdot K⁻¹ for ethanol; $\Delta H_2 = -4.09$ kcal \cdot mol⁻¹, $\Delta S_2 = -16.15$ cal \cdot mol⁻¹ \cdot K⁻¹, $\Delta H_4 = -21.65$ kcal \cdot mol⁻¹, and $\Delta S_4 = -72.37$ cal \cdot mol⁻¹ \cdot K⁻¹ for isopropanol; and $\Delta H_2 = -4.26$ kcal \cdot mol⁻¹, $\Delta S_2 = -16.67$ cal \cdot mol⁻¹ \cdot K⁻¹, $\Delta H_4 = -21.27$ kcal \cdot mol⁻¹, and $\Delta S_4 = -71.23$ cal \cdot mol⁻¹ \cdot K⁻¹ for t-butanol.

(3) Upper limits to the amounts of polymers through the octamer can be deduced from the thermal conductivity data. The limits are ca. 10^{-3} atm (10^{-1} kPa) for the trimer, 10^{-4} atm (10^{-2} kPa) for the tetramer, pentamer, and hexamer, and 10^{-5} atm (10^{-3} kPa) for the heptamer and octamer, all at 373 K and 1-atm pressure (10^{2} kPa).

(4) The average hydrogen bond enthalpy per monomer unit in the

tetramer decreases as the monomer complexity increases, while in the dimer the opposite is true.

ACKNOWLEDGMENT

This work was performed under the auspices of the Materials Science Office of the Division of Basic Energy Sciences of the Department of Energy.

REFERENCES

- 1. M. D. Joesten and L. J. Schaad, Hydrogen Bonding (Dekker, New York, 1974).
- 2. R. C. Wilhoit and B. J. Zwolinski, J. Phys. Chem. Ref. Data 2:Suppl. 1 (1973).
- 3. T. A. Renner, G. H. Kucera, and M. Blander, J. Chem. Phys. 66:177 (1977).
- 4. D. J. Frurip, L. A. Curtiss, and M. Blander, 16th International Thermal Conductivity Conference, Chicago, Illinois, 1979 (in press).
- D. J. Frurip, L. A. Curtiss, and M. Blander. Proceedings of the Seventh Symposium on Thermophysical Properties, A. Cezairliyan, ed. (Am. Soc. Mech. Eng., New York, 1977), p. 721.
- 6. J. N. Butler and R. S. Brokaw, J. Chem. Phys. 26:1636 (1957).
- 7. R. S. Brokaw, J. Chem. Phys. 32:1005 (1960).
- 8. L. A. Curtiss, D. J. Frurip, and M. Blander, J. Am. Chem. Soc. 100:79 (1978).
- 9. T. A. Renner and M. Blander, J. Phys. Chem. 81:857 (1977).
- 10. D. J. Frurip, L. A. Curtiss, and M. Blander, J. Phys. Chem. 82:2555 (1978).
- 11. W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc. London Ser. B 65:701 (1952).
- 12. D. J. Frurip, L. A. Curtiss, and M. Blander, J. Am. Chem. Soc. 102:2610 (1980).
- 13. R. G. Vines and L. A. Bennett, J. Chem. Phys. 22:360 (1954).
- 14. G. Vines, Austral. J. Chem. 6:1 (1953).
- 15. J. D. Lambert, E. N. Staines, and S. D. Woods, Proc. Roy. Soc. London A200:262 (1950).
- 16. P. M. Craven and J. D. Lambert, Proc. Roy. Soc. London A205:439 (1951).
- 17. Y. S. Touloukian, S. C. Saxena, and P. Hestermans, *Thermophysical Properties of Matter*, Vol. 11 (IFI-Plenum, New York, 1970).
- 18. R. W. Gallant, Physical Properties of Hydrocarbons, Vol. I (Gulf, Houston, 1974).
- 19. L. Monchick and E. A. Mason, J. Chem. Phys. 35:1676 (1961).
- 20. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular Theory of Gases and Liquids*, (Wiley, New York, 1954), Appendix Table 1A.
- 21. Ibid., p. 562.
- 22. J. O. Hirschfelder, J. Chem. Phys. 26:282 (1957).
- 23. Y. S. Touloukian and T. Makita, Thermophysical Properties of Matter, Vol. 6 (IFI-Plenum, New York, 1970).
- 24. L. A. Curtiss, D. J. Frurip, and M. Blander, J. Chem. Phys. 71:2703 (1979).
- 25. L. A. Curtiss, J. Chem. Phys. 67:1144 (1977).
- 26. C. B. Kretschmer and R. Wiebe, J. Am. Chem. Soc. 76:2579 (1954).
- 27. G. M. Barrow, J. Chem. Phys. 20:1739 (1952).
- 28. W. Weltner and K. S. Pitzer, J. Am. Chem. Soc. 73:2606 (1951).
- 29. J. C. Davis, Jr., K. S. Pitzer, and C. N. R. Rao, J. Phys. Chem. 64:1744 (1960).
- 30. S. Singh and C. N. Rao, J. Phys. Chem. 71:1074 (1967).
- 31. D. R. Stull and H. Prophet, JANAF Thermochemical Tables, NSRDS-NBS 37 (1971).
- 32. L. A. Curtiss and J. A. Pople, J. Mol. Spectrosc. 55:1 (1975).
- 33. M. Blander, J. Chem. Phys. 41:170 (1964).